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Experimental demonstration of realizability of optical focus wave modes
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~Received 31 July 2002; published 26 November 2002!

The homogeneous scalar wave equation has a number of so-called localized wave~LW! solutions, instan-
taneous, Gaussian pulselike intensity distribution of which propagates without any spread or distortions in free
space. Despite the undoubtedly intriguing properties and considerable effort that has been made to implement
such wave fields, in the optical domain only their limiting case—the so-called Bessel-X pulses—has been
experimentally launched so far. In this paper we report on experimental evidence of the optical realizability of
the ‘‘fundamental’’ special case of the LW’s—the focus wave modes.

DOI: 10.1103/PhysRevE.66.056611 PACS number~s!: 42.25.Bs, 42.15.Eq, 42.65.Re, 42.25.Kb
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I. INTRODUCTION

During the last two decades it has been established
the homogeneous wave equation has a number of so-c
localized wave ~LW! solutions, instantaneous, Gaussi
pulselike intensity distribution of which propagates witho
any spread or distortions in free space~see Ref.@1# for a
general review, also Refs.@2–27#, and references therein!. In
a theoretical limit, the spatial amplitude distribution
optical-domain LW solutions may consist of an intense c
tral peak of micrometer diameter on a sparse low-inten
background that travels without any transversal and/or l
gitudinal spread in free space. In realizable optical syste
for finite-energy and finite-aperture wave fields, the depth
such an invariant propagation is finite, yet it considera
exceeds the length of the waist of common focused field

The spatial and temporal localization makes the imp
mentation of LW solutions very attractive for applicatio
where the lateral and~or! transversal diffractional spread o
optical wave fields is a major limitation of the system pe
formance~e.g., optical communication, metrology, monito
ing, imaging, terahertz and femtosecond spectrosco!.
However, it is only the launching of the limiting cas
Bessel-X pulses, that has been accomplished in an opt
experiment so far@14,15#. The ideas that have been propos
for generation of more complicated LW solutions~see, e.g.,
Refs.@1,4–7#, and references therein! are hardly realizable in
optical domain.

In our recent publications@16–18# we proposed an ap
proach, how the complex optical LW solutions can be exp
mentally realized by making use of the wavelength disp
sion of cone angle~axicon angle! of Bessel beam generator
In particular, we showed that good approximations to
fundamental LW solutions—focus wave modes~FWM’s!
@2,3,11,16#—can be generated by a combination of an axic
and a circular diffraction grating.

In this paper we present the experimental proof of
validity of this approach. As the first logical step we define
wave field that we call a two-dimensional FWM~2D FWM!
and show that it shares all the characteristic properties of
FWM’s. Also, we will show, that the optical generation o
the two are in principle identical. Then we introduce o
optical setup, designed for the generation of the 2D FWM
The results of the experiments prove that our general ide
1063-651X/2002/66~5!/056611~9!/$20.00 66 0566
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optical generation of FWM’s@16# as well as the principles o
our setup are valid and can be used to carry out further
periments in this field.

We start by presenting a short overview of the propert
of the FWM’s in Sec. II. Then, in Secs. III and IV, we giv
the general idea and the mathematical description of the
periment. In Sec. V we give the details of the setup. T
results of the experiment and their discussion are prese
in Sec. VI.

II. THE FUNDAMENTAL LOCALIZED WAVE
SOLUTIONS—FOCUS WAVE MODES

The focus wave modes are the most widely known L
solutions of the scalar homogeneous wave equation. In te
of the angular spectrum of plane waves they can be descr
by the expression@11,16–18#

F~r,z,t !5E
0

`

dk a~k!J0@kr sinuF~k!#

3exp@ ik$z cosuF~k!2ct%#. ~1!

Herea(k) is the frequency spectrum of the wave field,J0( )
is the zeroth-order Bessel function of the first kind and
have denoted

uF~k!5arccosFg~k22b!

k G , ~2!

whereg andb are constants. Thus, the Eq.~1! can also be
given the form

F~r,z,t !5exp@2 i2bgz#E
0

`

dk a~k!J0@kr sinuF~k!#

3exp@ ik~zg2ct!#. ~3!

The expression~1! is essentially a cylindrically symmetric
superposition of monochromatic Bessel bea
J0@kr sinu#exp@ik(zcosu2ct)# @19# and Eq.~2! determines
the support of angular spectrum of plane waves of the w
field @see Fig. 1~a! for an example#. The constantg deter-
mines the group velocity of the wave field asvg5c/g and
parameter 2b has an interpretation as being the wave nu
©2002 The American Physical Society11-1
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ber of the plane wave component of the angular spect
that propagates perpendicularly toz axis @see Fig. 1~a!#. The
FWM’s have also been called ‘‘fundamental’’ LW solution
because they have been used to construct the more ge
classes of LW’s@1,11#

FIG. 1. On the general description of the FWM’s and 2
FWM’s. The examples here were calculated with the following p
tect b540 rad/s, g51 giving uFWM(k0);1.3° if k0

57.83106 rad/m (l0;800 nm), the frequency spectruma(k) is
uniform between the wavelengths 600 to 1000 nm:~a! the
kxkz-plane section of the support of the angular spectrum of pl
waves of the wave fields~note that for FWM’s the support is of th
cylindrical symmetry!, ~b! the spatial amplitude distribution of th
2D FWM in xz plane,~c! the spatial amplitude distribution of th
FWM in xz plane,~d! the central part of the instantaneous intens
distribution of the FWM.
05661
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The wave field~1! has been shown to possess the follo
ing properties@11,16–18#.

~1! The wave field can be constructed so that its instan
neous intensity distribution has a narrow on-axis central p
of the diameter of few micrometers. The pulse’s longitudin
profile is generally that of the corresponding transfor
limited Gaussian pulse@see Figs. 1~c! and 1~d!#.

~2! The spatial shape of the central peak does not cha
or spread, neither transversally nor longitudinally in t
course of propagation in free space.

~3! Generally the on-axis phase velocity of the wa
packet is different from its on-axis group velocity, the diffe
ence being determined by the constantb in Eq. ~2!. The
effect is also known as the local variations of the cent
peak of the wave field~see Refs.@1,20#, and references
therein!.

~4! The wave packets with different on-axis group velo
ties vg can be constructed from Eqs.~1! and ~2!.

~5! The limiting caseb50 in Eq. ~1! yields the simplest
class of LW’s—X pulses and Bessel-X pulses@21–27#. For
them not only the instantaneous intensity distribution b
also the field itself propagates without any change along
optical axis having equal phase and group velocities, b
necessarily superluminal.

In our opinion the peculiar properties of the FWM’s ca
be given physically the most transparent interpretation
treating them as the cylindrically symmetric superpositio
of the interfering pairs of certain tilted pulses@20# ~this ap-
proach has also been used to discuss the properties ofX-type
pulses, in this case the components of the interfering pair
the limiting case of the tilted pulses—plane wave puls
@14#!. In this representation the spatial amplitude distributi
of the FWM’s can be expressed as

F~r,z,t !5E
0

p

df@T~x,y,z,t;f!1T~x,y,z,t;f1p!#

[E
0

p

dfF2D~x,y,z,t;f!, ~4!

whereT(x,y,z,t;f) is the spatial amplitude distribution o
the tilted plane wave pulses, which in the spectral repres
tation is given by

T~x,y,z,t;f!5E
0

`

dk a~k!exp@ ik$x cosf sinuF~k!

1y sinf sinuF~k!1z cosuF~k!2ct%#,

~5!

where the angular functionuF(k) is defined by Eq.~2!. From
Eqs.~4! and ~5! we get

F2D~x,y,z,t;f!

5E
0

`

dk a~k!cos@k sinuF~k!~x cosf1y sinf!#

3exp@ ik$z cosuF~k!2ct%#. ~6!
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EXPERIMENTAL DEMONSTRATION OF REALIZABILITY . . . PHYSICAL REVIEW E66, 056611 ~2002!
@An example of the spatial amplitude distribution of the tilt
pulse in Eq.~5! is depicted in Fig. 2~a!, the spatial amplitude
distribution of the corresponding superposition of two tilt
pulses in Eq.~6!, and FWM’s in Eq.~1! are depicted in Figs
1~b! and 1~c!, respectively.#

The representation~4! gives the properties of the FWM’

FIG. 2. On the properties of the tilted pulses:~a! an excerpt of
the spatial amplitude distribution of a tilted pulse, herevg and vp

denote group and phase velocities respectively,k0 and l0 are the
wave vector and the wavelength of the plane wave of the ca
wave number,t is an arbitrary time andq is the tilt angle of the
pulse,~b! the amplitude of the tilted pulse in larger scale, the das
line marks the plane of equal intensity of the tilted pulse so that
‘‘waist’’ of the tilted pulse can be clearly seen,~c! a geometrical
illustration to the fact that the difference between the phase
group velocities of the tilted pulses is a direct consequence of
tilt between the phase fronts and the pulse front.
05661
the following interpretation:
~1! The localized central peak of FWM’s is simply th

well-known consequence of taking the axially symmetric s
perposition of a harmonic function~see Refs.@14,19# for
example!. Indeed, the interference of the two transform
limited tilted pulses in Eq.~6! gives rise to the harmonic
interference pattern, the transversal width of which is prop
tional to the temporal length of the tilted pulses~5! and the
central peak arises because in the superposition constru
interference occurs only on the optical axis. Formally, t
cos() function in Eq.~6! is replaced byJ0( ) in Eq. ~1! @com-
pare Figs. 1~b! and 1~c!#.

~2! The central peak does not spread because the sup
of the angular spectrum of plane waves of the tilted pulse~or
FWM! is constructed so that the group velocity of the wid
band wave packet along thez axis is constant over the entir
bandwidth@16–18#. Indeed, as

vg5S dkz

dv D 21

, ~7!

the Eq.~2! yields

kz5k cosuF~k!5gk22bg ~8!

for the z-axis component of the wave vector, so that we g

vg5const5c/g. ~9!

The property can also be given a wave optical interpretat
Namely, it can be seen from Fig. 1~b!, that the longitudinal
length of the tilted pulses generally depends on the trans
sal coordinate and the tilted pulses have a ‘‘waist.’’ The
lation ~8! essentially guarantees that the waist propaga
along the optical axis and does not spread—in this case
central peak of the corresponding cylindrically symmet
superpositions, FWM’s~1!, also remains transform-limited
as it propagates.

~3! The difference of phase and group velocities along
optical axis is a direct consequence of the fact that the p
and phase fronts of the tilted pulses are not parallel@20# ~see
Fig. 2, also Ref.@20# for the relevant discussion!.

~4! The group velocity of the wave field can be set
changing the parameterg in Eq. ~2! or ~8!. Figure 2~b! gives
the effect a clear physical interpretation—it can be seen,
the on-axis group velocity of the wave field in a simple ge
metric manner depends on the angleq between the phase
and pulse front~tilt angle!, and also on the direction of th
wave vector of the mean frequency. The free range of
parametersg and b can be deduced by means of simp
geometrical considerations. First of all, the angular spectr
of plane waves of the wave field should not contain a
backward propagating plane waves components for wh
kz(k).0 if we want the wave field to be causal for gener
tion with a planar source. Also, as the propagation length
the central peak of the FWM is inversely proportional to t
central cone angleuF(k0) @16,19#, the angular spectrum o
plane waves of the wave field should subtend only para
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K. REIVELT AND P. SAARI PHYSICAL REVIEW E66, 056611 ~2002!
angles to the optical axis, i.e., the condition cosuF(k);1
should be satisfied in the entire spectral range of the w
field.

It is easy to see, that all the presented arguments
equally valid for the superpositions of tilted pulses in Eq.~6!
and for its cylindrically symmetric counterparts—FWM’
Thus, we can state that the defined interfering pair of til
pulses, inclined with respect to each other under the an
2uF(k0), possesses all the characteristic properties
FWM’s. This equivalence is also obvious if we compare t
corresponding mathematical expressions~1! and ~6!—the
two are similar if we takef50 and the polar coordinater is
understood as the transversal coordinatex in Eq. ~6!. In fact,
the physics behind the two wave fields is similar to the
gree, that we will call the wave field~6! as 2D FWM in what
follows. Moreover, due to the more transparent physical
terpretation, we will concentrate mostly on the 2D FWM’s
present paper.

It is important to note that the exact form of the frequen
spectruma(k) in Eqs. ~1! and ~6! is not restricted by any
means. This is a direct consequence of the fact that the m
important property of FWM’s and 2D FWM’s—their non
spreading propagation—is assured by the condition~2!, i.e.,
by thesupportof the angular spectrum of plane waves of t
wave fields@20#. Consequently, the spatial shape of the
stantaneous intensity distribution of the FWM’s~the pres-
ence of the sharp central peak, for example!, determined also
by the frequency spectruma(k) is not their most essentia
characteristic. Instead the FWM’s should be described
wave fields that preserve their instantaneous intensity di
bution, whatever it is. However, there is a common feat
that can be attributed to all optically reasonable FWM’s—
characteristicX branching@see Figs. 1~b! and 1~c!#. Though
the transversal width and exact shape of the central, inte
ing part of the ‘‘X’’ depend on bandwidth and relative phas
between the spectral components, its overall presence is
coded into the support of the angular spectrum of the pl
waves.

It has to be emphasized that the representations~1! and
~6! are not strictly physical in the sense that the total ene
flow they contain is infinite. This inconvenience has be
addressed in several works, mostly by deriving various fin
energy flow approximations to FWM’s that could also
launched from finite aperture~see Refs.@1,4–7#, and refer-
ences therein!. In the context of present paper the most co
venient approach is the one proposed in our recent pub
tion Ref. @18#. In this paper we gave a simple mathematic
description of the effect of finite aperture to the outcome
the optical setup implemented in present work and dem
strated that in such setups the finite aperture of the op
system automatically eliminates the infinite energy flow
that the generated wave field is strictly physical. In fact,
only qualitative effect the finite-energy approximation intr
duces is the finite propagation length of the wave fields. T
results of this paper confirm the validity of this approach

III. THE GENERAL IDEA OF OPTICAL GENERATION
OF FWM’S

The general idea of optical generation of FWM’s can
introduced as follows. Consider the pair of plane wa
05661
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pulses propagating at anglesu0 and2u0 relative to the op-
tical axis @see Fig. 3~a!#. Obviously we can introduce a til
into the angular spectrum of plane waves by means of
angularly dispersive elements like diffraction gratings

FIG. 3. ~a! The FWM generator consist of an axiconA and of an
circular diffractional grating G~or two wedges and linear diffrac
tional grating, respectively, if we generate 2D FWM’s!, the FWM
can be observed in the conical volume~striped region! behind the
diffraction grating;~b! The support of the angular spectrum of pla
waves of the initial wave field on the FWM generator~solid line!.
Here and hereafter the dotted line denotes the support of ang
spectrum of plane waves of the~2D! FWM under discussion, the
dashed lines denote the bands of the frequency spectrum of the
used in our experiments~note the difference in scales betweenkx

and kz axis!; ~c! The support of the angular spectrum of pla
waves behind the axicon;~d! The support of the angular spectru
of plane waves at the exit of the FWM generator as compared w
the theory.
1-4
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EXPERIMENTAL DEMONSTRATION OF REALIZABILITY . . . PHYSICAL REVIEW E66, 056611 ~2002!
prisms ~wedges!. Provided that the resulting tilted pulse
overlap, we can observe the interference of two tilted pul
in near-axis conical volume@see the striped region in Fig
3~a!#. If the support of the spectrum of the plane wave co
ponents of the tilted pulses is the one described by the
~2! and if we ignore for the while the diffractional edge effe
that appears due to the finite aperture of the optical eleme
the interference pattern in the near-axis volume is that of
2D FWM’s described by Eq.~6!. Consequently, in this ap
proximation the optical generation of 2D FWM’s reduces
the modeling of a set of diffractive elements that transfo
the support of the angular spectrum of plane waves of
input wave field so that the angular dispersion of the out
pulse approximates the one described by the condition in
~2! and to the ‘‘compression’’ of the resulting wave field b
compensating for the relative phases between its monoc
matic components so that a transform-limited pulse app
on the optical axis. The former problem has been resolve
Ref. @16#—it has been shown that a good approximation
the tilt of the angular spectrum~2! can be generated b
means of the combination of a prism and a diffraction gr
ing. The latter task will be discussed later in present pap

The cylindrically symmetric case in Eqs.~1! and ~4! can
be considered as a straightforward generalization of this
proach. In this case the prism and diffraction grating
replaced by their circularly symmetric counterparts—axic
and a circular diffraction grating~see Ref.@16#!. The cylin-
drically symmetric counterpart of the initial superposition
the two plane wave pulses~the Bessel-X pulse orX pulse
@21,25–27#—can be generated by means of a combination
a circular slit and a Fourier lens@14#.

In this paper we experimentally implement the form
essentially one-dimensional case of the general idea and
tically implement 2D FWM’s. We decided so mostly becau
the physical concept is much more clear in this sort of
periments. However, it also appeared that the fabrication
polishing of a high-quality, large aperture concave coni
surface is still a complicated task.

IV. SETUP

The setup of our experiment is depicted in Fig. 4. T
main part of it is the FWM generator~see grayed area in Fig
4!. The FWM generator is placed into an arm of an interf
ometer.

The FWM generator consists of the mirrorsM7 andM8,
the two wedgesW1 andW2, and a blazed diffraction gratin
G. The Snell’s law and the grating equation yield the follo
ing equation for the direction of propagation of the mon
chromatic plane wave component behind the elements@16#:

sinuG~k!5
2p

kd
1n~k!sinF2a1arcsinS 1

n~k!
sin~u01a! D G ,

~10!

herea is the angle of the wedges,d is the groove spacing o
the diffraction grating,u0 is the angle the initial plane wav
pulse subtends to the optical axis, andn(k) is the refractive
index of the axicon and grating material~the sign conven-
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tions are chosen so that the anglesa,u0 ,uG(k) are positive
in Fig. 3~a!, first-order diffraction is assumed!.

In our experiment we implemented a 2D FWM with fo
lowing parameters:b540 rad/m, g51 giving uF(k0)
;0.26° if k057.83106 rad/m (l0;800 nm) @see Fig. 1~c!
for the corresponding theoretical spatial amplitude distrib
tion and Ref.@16##. The optimization of the parametersa,
u0, and d in Eq. ~10! yields a51.20431022 rad, d
53.74931024 m and u059.46831023 rad @see Figs.
3~b–d! for the transform of the support of the angular spe
trum of plane waves introduced by the optical elements#. The
comparison of the angular spectrum support, determined
Eq. ~10! to the one of the FWM in Eq.~2! is depicted in Fig.
3~d!.

We used interferometric cross-correlation methods w
time-integrated intensity recording to study the genera
wave field. The FWM generator has been placed in wha
basically a specially designed, modified Mach-Zehnder in
ferometer. The interferometer consists of two beam splitt
and identical broadband nondispersive mirrors. The in
field from the light source is split by the beams plitter BS
into the fields that travel through the two arms of the int
ferometer, the one with the FWM generator and the arm
the reference beam. The mirrorsM5 andM6 form a delay
line; they were translated by the Burleigh Inchworm line
step motor, the 1mm translation step of which was reduce
to 65 nm by a transmission mechanism. The mirrorM7 was
continuously translatable as to correct for the time shift
tween the two tilted pulses. The wedgesW1 andW2 were
transversally translatable so as to balance the material dis
sion they introduce to the plane wave pulses~see text below!.
We used Kodak Megaplus 1.6i charge-coupled device~CCD!
camera with the 153431024 matrix resolution and 10 bi
pixel depth. The linear dimensions of the matrix a
13.8 mm(H)39.2 mm(V), the pixel size is 9mm39 mm.

A very challenging part of the setup is the light source
computer simulations, or even simple geometrical estim
tions show that if the autocorrelation time of the source fi
t exceeds;10 fsec, the characteristicX branching@see Figs.
1~b!and 1~c!# occurs too far from the axisz and in this
narrow-band limit the resulting wave field would be nothin

FIG. 4. Experimental setup for generating 2D FWM’s and
cording its interference with plane wave pulses. The FWM gene
tor can be seen in grayed area;M ’s, mirrors;L ’s, lenses; BS’s, beam
splitters;W’s, wedges;G, diffractional grating; AL, Xe-arc lamp;
PH, pinhole.
1-5
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K. REIVELT AND P. SAARI PHYSICAL REVIEW E66, 056611 ~2002!
but a trivial interference of quasimonochromatic pla
waves. However, as the cross-correlation measurement
nique has been chosen, we do not need transform-lim
femtosecond pulses as the input light field. Instead, we
use a source of a stationary white noise. This is the c
because the time-integrated mutual intensity recordings
insensitive to phase relations between different temp
Fourier’s components of the field, i.e., the intensity reco
ings are sensitive only to the changes of relative phase
the temporal Fourier’ components in the two arms of
interferometer~see Ref.@28# for example!. In our experiment
we used the filtered light form a superhigh pressure Xe-
lamp, giving;6 fsec correlation time for the input field@see
Fig. 5~b! for the power spectrum of the light#.

The well-known drawback of the choice is the huge
reduced signal level—to ensure good transversal coher
over the clear aperture of the setup the white light has to
spatially filtered by means of a pinhole~PH in Fig. 4!. The
required diameter;15 mm of the pinhole and focal length
2 m of the collimating Fourier lens L1 was estimated fro
the van Cittert-Zernike theorem@29# for the mean wave-
length of the light,l05800 nm. As a result of the filtering
the total power of the signal on the;1.5-cm2 CCD chip was
'0.03mW.

Due to the short coherence time of the source field,
experiment is also highly sensitive to the phase distorti
~spectral phase shift! introduced by the dispersive optical e
ements of the system—the beam splitters and the FWM g
erator. In the FWM generator there are three possible sou
of undesirable dispersion:~1! the propagation in the glas
substrate of the diffraction grating,~2! the propagation be
tween the grating and the axicon where the support of an
lar spectrum of the wave field is not appropriate for the f
space propagation, i.e., it does not obey Eq.~2!, and~3! the

FIG. 5. ~a! A typical interferogram in the setup as recorded
the CCD camera,~b! the power spectrum of the light used in o
setup.
05661
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propagation in the wedges. The beam splitters in our se
are identical and if we set them perpendicularly and ori
the coated sides so that each beam passes the glass sub
of the beam splitter twice, the arms of the interferome
remain balanced. The influence of the propagation betw
the elements can be made negligible by placing them clos
each other. The character of the undesirable dispersion in
wedges can be estimated from the following consideratio
The entrance wave field on the wedges is the transfo
limited Bessel-X pulse, so, the on-axis part of the pulse
also transform limited and should pass through the wed
unchanged, i.e., without any additional spectral phase s
Consequently, the wedges should be produced and aligne
that their thickness is zero on the optical axis. As the ap
angle of the wedges is very small in our setup (;0.7°), this
is not a very practical approach and we consider the fin
thickness on the axis as the source of additional spec
phase shift instead. Thus, the composite spectral phase
of the FWM generator can be described as the phase di
tion introduced by the substrate of the diffraction grating a
by a glass plate of the material of the wedges, the thickn
of which is equal to the thickness of the wedges on the
tical axis.

Apparently the introduced spectral phase shift can
eliminated by applying conjugate phase distortion to the
tial field in the FWM generator arm of the interferometer a
this can be done by means of the dispersion compensa
techniques routinely used in femtosecond optics. Howe
we take a more straightforward approach and simply bala
the arms of the interferometer by inserting material disp
sion into the reference arm of the setup by means of
appropriate glass plates~GP1 and GP2 in Fig. 4!.

In principle, the femtosecond pulses are also sensitive
the dispersion of the air and we should replacekz by kzn(v)
in Eqs. ~7!–~9!, n(v) being the refractive index of the air
This modification yields the following equation for the su
port of the angular spectrum of plane waves of the FWM

uFS v

c0
D5arccosF gS v

c0
22b D

n~v!
v

c0

G , ~11!

wherec0 is the velocity of light in vacuum. In fact, Eq.~11!
is of quite general interest, as it defines the support of an
lar spectrum of plane waves to the wave field that propag
without any longitudinal or transversal spread in linear d
persive media. This approach—to use predetermined ang
dispersion to suppress the longitudinal~and transversal!
dispersion—thought differently formulated, has been alrea
used in Refs.@15,30,31#. However, in interferometric experi
ments we can use Eq.~2! instead of Eq.~11! as long as the
arms of the interferometer are of equal length.

To finish this section we note the following. Obviously w
should keep in mind that we are measuring interference
terns of the partially coherent wave fields, not of t
transform-limited optical pulses. However, due to the kno
insensitivity of the interferometric experiments to the pha
1-6
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relations between different temporal Fourier’s component
the wave fields and for the convenience of the representa
we will not call attention to this circumstance in what fo
lows and, for brevity, use the terminology of the cohere
pulsed optical wave fields instead. In our forthcoming pub
cation we will present the following discussion in the term
of second-order coherence theory.

V. MATHEMATICAL DESCRIPTION
OF THE EXPERIMENT

In our experiment the superposition of the two tilte
pulses—the 2D FWM—interferes with a plane wave pu
VP ,

V~r ,t !5F2D~r ,t !1VP~r ,t !. ~12!

Here

VP~r ,t !5E
0

`

dk a~k!bP~k!exp@ ik$z2c~ t1t!%#, ~13!

bP(k) being the spectral phase shift introduced by the op
in the reference arm of the interferometer,ubP(k)u[1, andt
denote the time delay between the two pulses. For the
FWM we have

F2D~r ,t !

5E
0

`

dk a~k!bF~k!cos@kx sinuF~k!#

3exp@ ik$z cosuF~k!2ct%#, ~14!

wherebF(k) is the undesirable spectral phase shift from
2D FWM generator,ubF(k)u[1 ~the nature of the phas
functions bP(k) and bF(k) has been discussed in the pr
ceeding section!. The averaged intensity of the resultin
wave field can be expressed as

^V* V&5^VP* VP&1^F2D* F2D&12 Rê F2D* VP&, ~15!

where the angle brackets mean time average and we
omitted the arguments (r ,t) for brevity. The first term in the
sum is the uniform intensity of the plane wave pulse,

^VP* VP&5E
0

`

dkA~k!, ~16!

A(k)5a* (k)a(k) being the power spectrum of the wav
field. The second term is the time-averaged intensity of
2D FWM,

^F2D* F2D&5E
0

`

dkA~k!cos2@kx sinuF~k!#. ~17!

For the third term we get
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^F2D* VP&5K E
0

`

dk1a* ~k1!bF* ~k1!cos@k1r sinuF~k!#

3exp@2 ik1$z cosuF~k1!2ct%#

3E
0

`

dk2a~k2!bP~k!exp@ ik2$z2c~ t1t!%#L ,

~18!

so that

^F2D* VP&5E
0

`

dkA~k!bF* ~k!bP~k!3cos@kr sinuF~k!#

3exp@2 ikz$cosuF~k!21%2 ikct#. ~19!

Assumingg51 and using Eq.~2! we get

^F2D* VP&5exp@ i2bz#E
0

`

dkA~k!bF* ~k!bP~k!

3cos@kr sinuF~k!#exp@2 ikct#. ~20!

If the arms of the interferometer are balanced, the relat
bF* (k)bP(k)[1 holds and we have

^F2D* VP&5exp@ i2bz#E
0

`

dkA~k!3cos@kr sinuF~k!#

3exp@2 ikct#. ~21!

Equation~20! can also be given in the form

^F2D* VP&5E
0

`

dkA~k!cos@kr sinuF~k!#

3exp@2 ikz cosuF~k!1 ikc~ t02t!#, ~22!

wheret05z/c and the constant has the interpretation of b
ing the time that a wave field propagating at group velocitc
travels the distancez to the plane of measurement. The int
gral expression~22! is very similar to the one describing th
spatial amplitude distribution of the 2D FWM’s Eq.~6!, the
only difference being that the frequency spectrum is repla
by the power spectrumA(k) in Eq. ~22!. Nevertheless, we
cannot claim, that we actually detect the spatial amplitu
distribution of the wave field under investigation~see also
Ref. @14# for a relevant discussion!. Indeed, as the absolut
phases of the plane wave components are inevitably los
interferometric experiments, we cannot say anything ab
the instantaneous amplitude distribution of the wave fie
However, the interferogramsdo carry information about the
supportof the angular spectrum of plane waves—if the ar
of the interferometer are balanced and the angular disper
of the monochromatic plane wave components of the ge
ated wave field is indeed as defined by Eq.~2!, the interfer-
ence patterns, described by Eq.~22!, show the spatial ampli-
tude distribution of the corresponding transform-limite
wave field.
1-7
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VI. THE EXPERIMENT

Our aim is to prove that the wave field generated in o
setup shows all the characteristic properties of~2D! FWM’s
mentioned in the previous sections: the spatial amplitude
tribution of the generated wave field~as defined in the end o
the preceding section! should be transform limited and sho
the characteristicX branching in Fig. 1~b!; it should propa-
gate without transversal or longitudinal spread at the sp
of the light in vacuum (vg5c), its on-axis group and phas
velocities should not be equal (vgÞvp). To accomplish the
task we use the direct correspondence between the des
tion of the 2D FWM’s in Eq.~6! and the description o
interferograms in our experiment in Eq.~22!.

In the first experiment we recorded the time-averaged
terference pattern of the 2D FWM and the reference w
field as the function of the time delay between the two. T
experiment can be mathematically modeled by varying
rametert in Eqs. ~15!–~21!. We scanned the time delay a
three z-axis positions,z50 cm, z525 cm, z550 cm ~the
origin of the z axis is about 30 cm away from the bea
splitter BS2 in Fig. 4!. In each experiment we recorded 30
interferograms, the time-delay step was 0.43 fs
(0.13mm).

In a typical interference pattern in our experiment@see
Fig. 5~a!# the sharp vertical interference fringes in the cen
correspond to the second term in the interference sum~15!—
this is the ‘‘propagation-invariant’’ time-averaged intens
of the 2D FWM. The fringes can also be interpreted as
autocorrelation function of the interfering tilted pulses@see
Fig. 5~b! for the corresponding power spectrum#. In this ex-
periment the intensity of the wave field under study does
carry any important information, so we subtracted it nume
cally from the results in Fig. 6. The interference fringes th
are symmetrically at both sides of the central part corresp

FIG. 6. The interference pattern in the setup as the function
the delay between the signal and reference wave fields in t
positions of the CCD camera~see text for more detailed descrip
tion!.
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to the third most important term in this sum. It can be se
from Fig. 5~a!, that due to the low signal level the recorde
interferograms are quite noisy. To get the better signal
noise ratio, we took the advantage of the known symmetry
the experiment and summed each interferogram vertically
and used the resulting one-dimensional data arrays inste

The results of the experiment are depicted in Fig. 6.
can see that there is a good qualitative resemblance betw
the measuredxt plot of the interference pattern and the th
oretical amplitude distribution of the 2D FWM’s in Fig. 1~b!.
In Fig. 6 one can clearly see the characteristicX branching
and the two interfering tilted pulses can be clearly reco
nized in the picture. Also, the wave field is definite
transform-limited, so we have managed to compensate
the spectral phase shift of the 2D FWM generator.

We can also see that the interference patterns do not s
up any spread over the 0.5 m distance, consequently,
wave fields do not spread in the course of propagation.

An additional detail can be found in Fig. 6: the tilte
pulses do not extend across the whole picture but are cu
~see dashed lines in Fig. 6!. Also, the ‘‘edges’’ of the tilted
pulses move away from the optical axis. This effect can
clearly interpreted as the consequence of the finite exten
the tilted pulses, as illustrated in Fig. 3~a! @20#—the dashed
lines simply mark the borders of the volume, where the t
tilted pulses intersect, i.e., the borders of the volume, wh
the 2D FWM exists@see the striped area in Fig. 3~a!#.

FIG. 7. The interference pattern as the function of the CC
camera position~see text for detailed description!.
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In the second experiment we recorded the interfere
pattern as the function of the propagation distancez. The
experiment can be simulated by varyingz coordinate in Eq.
~21!. We recorded 240 interferograms, the step of the C
camera position was 3.1 mm. The numerical simulation
the experiment together with the results of the experim
are depicted in Figs. 7~a! and 7~b!, respectively.

The experiment can be easily interpreted—as the ge
ated wave field is propagation-invariant, the positio
invariant envelope of the interference pattern is the con
quence of the fact that the group velocity of the 2D FWM
c ~the reference plane wave pulse propagates with this ve
ity!. Thez-dependent finer structure of the interferograms
the consequence of the fact that the phase velocities of
plane wave pulse and 2D FWM are not equal, i.e., we h
also vgÞvp for the phase and group velocities of the 2
FWM ~see also Ref.@20#!. The result of the experiment in
Fig. 7~a! shows a good qualitative agreement with the theo

We can also determine the parameterb from our
experiment—the exponent multiplier in Eq.~21! reads
exp@i2bz#, thusb5p/z0, wherez0 is the period of the varia-
tions along thez axis. From the result in Fig. 7~a! we esti-
zi-

.

er

er

h.
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matedz0'7.5 cm, so thatb'42 rad/m, which is in good
agreement with the theory.

Thus, we have shown that the generated wave field ha
the characteristic properties described in the previous th
retical sections and the validity of the general idea has b
given an experimental proof.

VII. CONCLUSIONS

In this paper we presented the experimental evidence
the optical realizability of the fundamental LW solutions—
focus wave modes. We constructed an optical setup for g
eration of two-dimensional FWM’s and obtained results fro
interferometric measurements of the generated wave fi
that exhibits all the characteristic properties of the FWM
Hence, our general idea of optical generation of FWM’s@16#,
as well as the principles of our setup are valid and can
used to carry out more advanced experiments in this fiel
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